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Abstract

We propose a machine learning model, inspired by language modeling from natural

language processing, which can automatically correct molecules in discrete representa-

tions using a structure rule learned from a collection of undirected molecular graphs.

Using discrete representations of molecules allows cheap, fast, and coarse grained in-

sights. We introduce an adaption on a modern neural network architecture, the Trans-

former, which can learn relationships between atoms and bonds. The algorithm thereby

solves the unsupervised task of recovering partially observed molecules represented as

undirected graphs. This is to our knowledge, the first work that can automatically learn

any discrete molecular structure rule with input exclusively consisting of a training set

of molecules. In this work the neural network successfully approximates the octet rule,

relations in hypervalent molecules and ions when trained on the ZINC and QM9 dataset.

These results provides encouraging evidence that neural networks can learn advanced

molecular structure rules and dataset specific properties, as the transformer surpasses

a strong octet-rule baseline.
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Introduction

In drug discovery,1,2 catalysis,3,4 combustion and other areas of chemistry, the number of

possible relevant molecules grows exponentially with size of the molecule or size of the re-

action network. Modeling and exploring large data sets of molecules therefore benefit from

fast coarse grained methods to generate, select, filter and correct molecules represented as

data.

A trade-off exists between accuracy and cost from accurate, but expensive, quantum

chemical methods to highly scalable learning algorithms which provide coarse grained pre-

dictions on the target properties. In machine learning models for atomic structure data,

an important distinction lies between models on continuous real-space representations, such

as force fields, as opposed to models on discrete graph based representations, the latter of

which is a coarse grained, but far more scalable representation.5,6

Machine learning methods for predicting properties based on discrete encodings have only

recently begun to train and predict on undirected graphs, as opposed to directed linear

graphs or sequences such as SMILES.6–11 A requirement for any model is that molecules are

considered invariant under permutation, translation and rotation, which calls for undirected

graph representations and models that are inherently permutation invariant.12

The tasks of correcting, completing and generating molecules in discrete representations

usually rely on the octet rule as the fundamental structure rule. This alone defines the

validity, i.e. the stability of molecules.6,13–16 Despite the success of the octet rule, it has limi-

tations such as not allowing hyper-valent molecules, ions, and inability to capturing structure

phenomena in liquid environments.

In this paper, we introduce an unsupervised task, known as masked language modeling

or denoising autoencoder,17–19 over an undirected discrete graph representation of a given
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molecule. We define the unsupervised task as applying a corruption to a molecule and learn-

ing how to revert such corruption to recover the valid molecule. This objective allows us

to learn the underlying structure rule without any hard-coded heuristic, but exclusively by

observing valid molecular graphs.20

This paper presents several models trained on the QM9 and ZINC.16,21,22 The ground

truth we approximate, and benchmark against, is either that the original atom is correctly

predicted (sample F1), or that the prediction is correctly predicted or satisfies the octet rule.

In Natural Language Processing (NLP) the a goal of statistical and probabilistic language

modeling is to learn the joint probability mass function of sequences.23 Historically, this has

been accomplished by calculating the probability of observing a word given the sentence

that precedes it.24 Methods exploiting the sequential relationship between words in text has

been ranging from probabilistic finite automaton24 to distributed word embeddings25 and

recurrent neural networks (RNN).26–28 To cover the most recent development in language

modeling, adapted to fit undirected graphs with high degrees, we test the following methods

of increasing complexity:

• unigram — unconditional probabilities of the atoms

• bag-of-neighbors — neural network that counts the neighboring atoms

• bag-of-atoms — neural network that counts all atoms in the molecule

• binary/bond-transformer — neural network architecture with attention using either

binary representations of bond types or full bond type information

The binary/bond-transformer is inspired by a recent trend in NLP, called masked lan-

guage modeling, where the sequential requirement can be relaxed.18 Most noticeably, we

modify masked language modeling to work with molecules by masking atoms and using

graph adjacency matrices to model intermolecular relationships.
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Methods

In this section we present several methods to restore molecules that have been corrupted. We

formally define this as an unsupervised learning task over discrete molecular graphs, where

we use a simple corruption function that masks atoms. We introduce four unsupervised

models with increased modeling complexity: counting, nearest neighbor, all atoms, and the

transformer model; which we compare against the octet-rule.

Unsupervised learning of discrete molecular graphs

Autoencoders are a type of neural network that use unsupervised learning. They create

an efficient representation of data by extracting important features.29 However, when the

autoencoder has a larger hidden than input dimension the neural network risk learning the

identity function, which makes the autoencoder useless. The denoising autoencoder19 alle-

viates this problem by corrupting the input data on purpose.

In our case the input is a molecule, which we represent as an undirected graph with dis-

crete edges G = (V,E). Here V is a set of vertices (atoms), such that (a, i) ∈ V where a ∈ A

is the element, i ∈ N is the index. E is the set of undirected bonds between atoms in the

molecule, such that E ⊆ {x, y, b} | (x, y) ∈ V 2 ∧ (x, y) = (y, x) ∧ x 6= y, where b ∈ {1, 2, 3}

is the bond type: single, double, or triple.

In the denoising autoencoder we corrupt the input with the corruption function κ : V →

Ṽ . By recovering a corrupted molecule we force the neural network to learn the underlying

rules governing molecules.

For the experiments we use a corruption function that mask atoms in a molecule with

bond type intact. This method of corruption is inspired by the masked language model
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presented in BERT.18 To apply the corruption function we replace a set of vertices with the

<MASK> token as described in equation (1)

Ṽ = V − Vsubset ∪ κ(Vsubset), Vsubset ⊆ V (1)

κ(a, i) = (<MASK>, i) (2)

Given the corrupted graph, G̃ = (Ṽ , E), we want to maximize the probability of recov-

ering the original graph, G, which equals maximizing the probability of the masked atoms.

maxP (G|G̃) = maxP (Vsubset|G̃) (3)

In the following subsections we present four models maximizing this objective with in-

creasing modeling complexity.

Counting: atomic frequencies

A counting-based model obtains the distribution of atom types by calculating their frequen-

cies over a dataset. Counting-based models will by intuition have high accuracy when the

dataset is biased, which we find the QM9 and ZINC are (see Table 1).

The count-based model is motivated by the probability chain-rule, where we can model

the joint probability of the atoms vi = (a, i) ∈ V in a molecule.

P (v1, v2, . . . , vn) = P (v1)P (v2|v1) . . . P (vn|v1, . . . , vn−1) (4)

While equation 4 allows us to exactly estimate the conditional atom distribution, the con-

dition grows exponentially with the amount of vertices and becomes infeasible due to the

exponential requirement of data and compute. In NLP the directionality of the sentence

allows for clipped, n-gram, versions of equation 4 where the prediction of the word distri-
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bution is only conditioned on the last k tokens P (vn|v1, . . . , vn−1) = P (vn|vn−k, . . . , vn−1).

Using N-grams significantly reduces required computation and data while exploiting locality

in language.24

In molecules, the degree of vertices and lack of directionality makes such n-gram models

cumbersome as each atom can have a tree of recursive n-grams. Because of such, we limit

ourselves to only consider unigram models (1-grams) for the counting case. A unigram

model splits the probability of different terms in a context into a product of individual

terms, disregarding the condition of equation 4.

Punigram(v1, v2, . . . , vn) = P (v1)P (v2) . . . P (vn) (5)

P (aj) =
count(aj)∑
a count(a)

(6)

Unigram models have the benefit of being relatively simple to implement and interpret as

they merely count the occurrence of elements in the trainingset. The unigram distribution

on the QM9 and ZINC trainingset are shown in Table 1.

Table 1: Unigram probabilities for QM9 and ZINC trainingset. The unigram probabilities
corresponds to the distribution of elements in the dataset.

Elements QM9 ZINC
P(H) 0.519 0.47407
P(C) 0.347 0.38691
P(O) 0.078 0.05416
P(N) 0.054 0.06109
P(F) 0.002 0.00856
P(P) 0 0.00001
P(S) 0 0.00913
P(Cl) 0 0.00452
P(Br) 0 0.00144
P(I) 0 0.00011

This indicates a bias in the data towards the elements H and C. Note that the unigram

model will always predict with the same probability distribution of elements for any vertice
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or atom as it does not use context.

Using our objective from equation 3 we calculate our unigram probability of the corrupted

molecule as

maxP (Vsubset|G̃) = max
∏

ṽ∈Vsubset

P (ṽ) (7)

Bag of vectors: neighbors and atoms

In a bag-of-vectors model a molecule is represented as a multiset of its tokens (elements

and/or bonds),5,30 disregarding structure but keeping multiplicity (i.e. multiple occurrences

of the same token). Each token, x, is embedded as a trainable vector of real numbers

x ∈ Rd. By summing the n tokens of a molecule over the d features we obtain the

bag-of-vectors : Rn×d → Rd representation (sum is used instead of mean to keep mul-

tiplicity). The bag-of-vectors representation is used as input to a neural network that

learns to predict the masked tokens Vsubset. The token vectors, also known as embeddings,

and the neural network are jointly optimised with stochastic gradient descent.25,31 Using eq.

3 we define two bag-of-vector models for our study: a bag of neighboring atoms (eq. 8 )

and a bag of all atoms in the corrupted molecule (eq. 10).
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max
θ
P bag-of-neighbors
θ (Vsubset | G̃) = max

θ

∏
v∈Vsubset

Pθ(v|Vneighbors) (8)

Vneighbors = {vj | (vj, v) ∈ E} (9)

max
θ
P bag-of-atoms
θ (Vsubset|G̃) = max

θ

∏
v∈Vsubset

Pθ(v|Ṽ ) (10)

P (xj|X̃)θ = softmax(Whθ(X̃))j =
exp((Whθ(X̃)j)∑|Σ|−1

i=0 exp((Whθ(X̃))i)
(11)

hθ(X̃) = NN(zθ(X̃)) (12)

zθ(X̃) =
∑
x̃∈X̃

embedding(x̃)) (13)

To represent our corrupted tokens in equation 13, X̃, we use an embedding function. Embed-

ding functions, embedding(x) ∈ Rdemb , are a popular way to represent input tokens in NLP.25

The embedding function uses a dense vector representation for each token class, which allows

the embedding function to learn relations between token classes. As we want to model all

the tokens in the molecule with a neural network we need to have a fixed feature space. A

convenient way to achieve such is the bag-of-vectors, which sums all tokens to achieve a

fixed-sized distributed feature representation of X̃. Given a bag-of-vectors representation,

zθ, we want to model the corrupted atoms. We choose to use a feed forward neural network

in equation 12, NN : Rdemb → Rdnn . A NN is a powerful non-linear function approximator

that can learn relations between tokens. To map the NN output onto probabilities for the

element classes we use trainable a linear projection, W ∈ R|Σ|×dnn , followed by the softmax

function (eq. 11), which squeezes the output to the probability domain. |Σ| denotes the

amount of elements we predict over for each atom (e.g in QM9 that would be five: H, C, N,

O and F).24

The bag-of-vector models are trained end-to-end with stochastic gradient descent using
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a cross-entropy loss function given the set of correctly labelled atoms Vsubset.24

L(Vsubset, G̃) =
∑

v∈Vsubset

logPθ(v | G̃) (14)

Where the conditional probability, Pθ(v | G̃), is calculated accordingly to; equation 8 for the

bag-of-neighbors and equation 10 for the bag-of-atoms.

Since these models rely on either pairs of atoms (neighbors) or mere counts (atoms) they

can work with a broad family of corruption functions. However, only including compositional

information is a coarse representation of a molecule, e.g. we have several large subsets of

molecules in QM9 with fixed element compositions, which have varied structures but iden-

tical bag-of-atoms representations.

Moreover, in equation 10 for the all-atom based model we have the same condition for all

the predictions, Vsubset. As such, it will always predict the same distribution for the masked

atoms, given the composition.

While these models are limited in representational power, they provide a rudimentary

baseline for our introduction of the transformer model on undirected molecular graphs.

Tranformer: atomic context

The ideal discrete representation of a molecule must have permutation, translation and ro-

tation invariance as well as allowing branched and aromatic molecules, in other words, an

undirected graph with vertices of high degree.12

We adapt the transformer32 to fulfill all of the above requirements. The transformer

is a neural network architecture that uses repeated adaptive receptive fields (known as at-

tention33) to model relations between words in a text given their context. The original
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transformer, like many other NLP models, uses sequence information to build context from

relative word positioning. Instead of a sequence representation we use an adjacency matrix

to give a complete description of the molecule.34

We test two approaches for encoding bond information: the binary-transformer, where

all bonds are binary, and the bond-transformer, where bonds type (1, 2, or 3) is given.

Using eq. 3, the transformers take the entire graph representation as input and learn a

parameterized function that we train to maximize eq. 15.

max
θ
P transformer
θ (Vsubset | G̃) = max

θ

∏
v∈Vsubset

Pθ(v|G̃) (15)

Pθ(vj|G̃) = softmax(W transformθ(G̃)L)j (16)

Similar to the bag-of-vectors we use a softmax function to learn class (atomic element)

probabilities. The transformer consist of L transformθ layers. Each layer applies a non-

linear function to build molecular context. The final layer, transformθ(G̃)L, is used for

classification. Each layer consist of an attention mechanism with layer normalization,35

skip-connections,36,37 and a feed forward neural network;38 which allows the transformer

to model structures and dependencies for each atom using the entire molecule. Where the

atomic representation of each layer is defined as hl, zl ∈ R|V |×dtransform .

transformθ(V,E)l = hl = layer-norm(zl + FFN(zl)) (17)

zl = layer-norm(hl−1 + Attention(hl−1, E)) (18)

h0 = atom-embedding(V ) (19)

The atom-embedding, h0, is identical to the embedding in equation 13. To represent either

the full bond type or just the binary edge information we set the adjacency matrix Ei,j ∈
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{0, 1} for the binary-transformer or Ei,j ∈ {0, 1, 2, 3} for the bond-transformer. Like

the bag-of-vector models, this is trained with stochastic gradient descent using the cross-

entropy loss function (see equation 14).

Attention

As with the original transformer, we use the key-value lookup Attention function. This

layer can adaptively align information between atoms conditioned on the context of other

atoms.33,39 Our implementation takes a layer of hidden representations, hl, and an adjacency

matrix of edges, E, as input. Notice that we have separate trainable bond-embedding

functions for the key, eK , and value, eV , edge representations.

Attention(h,E)i =
n∑
j=1

αij
(
hjW

V + eVij
)

(20)

αij =
expφij∑n
k=1 expφik

(21)

φij =

(
hiW

Q
) (
hjW

K + eKi,j
)T√

dtransform
(22)

e = bond-embedding(E) (23)

where aij ∈ [0, 1] is the attention weights, n is the number of vertices, WQ, W V , and WK ∈

Rdtransform×dtransform are trainable weights. The bond-embedding : E|V |×|V | → R|V |×|V |×dtransform

takes an adjacency matrix and returns a three dimensional tensor with a distributed repre-

sentation for each edge.

To have a more expressive attention function we use the multi-head attention mechanism

by concatenating k attention layers. The k attention layers are projected to the hidden size

of the network Rdtransform×k → Rdtransform , such that

Multi-Head-Attention(h,E)i = [C_1, C_2, . . . C_k]Wmulti (24)
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where C_i corresponds to an instance of Attention (eq. 20) andWmulti ∈ R(dtransform· k)×dtransform

is a trainable weight. This is further illustrated in Figure 1

Scale
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Embed

E

MatMul

Addition

Scaled Dot-Product Attention Transformer Layer

E

Scaled Dot-Product Attention

Concat

Linear
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Figure 1: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention with multiple
layers consisting of several attention layers running in parallel. Figure modified from Vaswani
et al. 32

.

Experimental setup

In our experiments we test the described models of the unigram, bag-of-neighbors, bag-of-atoms,

binary-transformer, and bond-transformer as denoising autoencoders on the QM9 and

ZINC datasets.16,21

Pre-processing

The QM9 dataset has 134 000 organic molecules with of five types of atoms; A = {H, C, N,

O, F}. Similarly, the ZINC dataset has 250 000 drug-like molecules with 10 type of atoms,

12



A = {H, C, N, O, F, P, S, Cl, Br, I}. The molecules are represented as a SMILE strings40

corresponding to their discrete graph representations. We obtain an adjacency matrix for

each molecule from the SMILES string using Rdkit.41 Since we use the QM9 dataset to bench-

mark our ability to approximate the octet rule, we discard any molecules that contains net

charges (1808 molecules). In the ZINC dataset, we keep all molecules including molecules

with charges and hypervalent molecules.

The resulting set of adjacency matrices are split using scaffolding to homology partition

the molecules. We make a 15% test, 15% validation, and 70% training set split. In Figure

2 we show the distribution of elements for different sizes of molecules. Here we see that in

both the QM9 and ZINC dataset, the size of the molecules are not uniformly distributed, with

few small and large molecules. Furthermore, the molecules in ZINC are generally larger than

the ones in QM9. The distribution of different elements depends somewhat on the size of the

molecule, especially for smaller molecules.

To stress test the models we generate several validation-/ and tests sets with increasing

complexity. For ZINC, the datasets have either 1, 10, 20, 30, 40, 50, 60, 70, or 80 atoms

randomly masked in the molecule, denoted by ncorrupt. For ncorrupt = 1, we oversample the

molecules, by generating five unique different maskings per molecule. This is done to reduce

the variance of our estimated performance, especially on molecules with few atoms, since

there only exists few of these in the dataset.
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Figure 2: Count (top) and distribution of elements per molecule size (number of atoms) for
(a) QM9 training set, (b) QM9 test set, (c) ZINC training set and (d) ZINC test set.

Training details

To train the model we optimize the objective for each of the methods (equation 7, 8, 10, and

15) by corrupting the atoms, with masking, and reversing the corruption. When increasing

the masking we have an exponentially growing combination of corruptions, for which reason

we sample the atom modifications in an online manner for training. To make the model
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robust towards different levels of corruption we employ an ε-greedy corruption scheme.42

Pr(no. of corruptions = k) =

1− ε+ ε
|V | k = ncorrupt

ε
|V | k 6= ncorrupt

(25)

in the first case, with probability 1 − ε, we corrupt ncorrupt atoms and in the second case,

with probability ε− ε
|V | , we uniformly corrupt between 1 to |V | where |V | is the amount of

atoms in the molecule. We use ncorrupt = 1 for training. The models are trained on an Nvidia

Tesla V100 GPU, using Adam optimization,43 and a learning rate of 0.001 for all models.

The experiments are implemented in PyTorch.44

Evaluation

When predicting the true value of a masked atom in a molecule, several solutions might be

equally correct. In NLP this is often handled by considering sample exact match. However,

for molecular structures we know that multiple elements could exist in the same position.

This is formalized by the octet rule, which allows the prediction of elements with a similar

number of valence electrons. We define the union of an exact match and elements that are

correct with respect to the octet rule as octet accuracy (e.g H and F could both be possible

when one bond is present). Given that the QM9 dataset is generated by the octet rule, cor-

rectly understanding the octet rule would result in 100% octet accuracy, which is why we use

it as our first dataset - to see how difficult it is to learn the octet rule. The ZINC dataset on

the other hand does not conform to the octet rule as it contains ions and hypervalency. This

tests our models ability to go beyond the octet rule and learn other underlying structure

rules of molecules present in ZINC.

Since the distribution of atoms in the data is heavily biased, we use the F1-micro and

F1-macro scores, which are a weighted average of the precision and recall.45
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While the octet rule becomes increasingly ambigious when more elements are allowed,

understanding what underlying structures are more common, exact match is of interest. This

is important to evaluate if we can fit the specific distribution of a dataset. We define exact

match as sample accuracy and F1. Moreover, we supply sample perplexity measures, which

is a more fine grained way of assessing certainty in model prediction.

Perplexity = exp

(
− 1

|Vsubset|
∑

v∈Vsubset

logP (v|G̃)

)
(26)

We benchmark our proposed models against an octet rule model. The octet rule model

counts the number of covalent bonds of the masked atom and predicts the unigram prob-

abilities of the elements of the corresponding group in the periodic table. We denote this

model as the octet-rule-unigram. When predicting elements with ambiguity (e.g hydro-

gen and fluor in the QM9 dataset) the octet-rule-unigram will therefore not obtain perfect

perplexity. As no predictions exsists for hypervalent elements (five and six covalent bonds),

the octet-rule-unigram predicts uniform probability. Notice that as opposed to using a

unigram model, this actually gives better perplexity as S is underrepresented in the dataset

(see Table 1).

Results

We test all proposed models on octet and sample accuracy, F1, and perplexity. First, we

evaluate the models on the QM9 dataset, where the purpose is to learn an Octet-rule approx-

imation. Next, we measure the models on the ZINC dataset and attempt to extend the octet

approximation with hypervalent molecules and ions. Finally, we provide a qualitative insight

into model prediction by analyzing six different samples (three correct, three incorrect) from

the binary-transformer.
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QM9 - approximating Octet rule

In Table 2, we evaluate our models on octet rule accuracy, octet rule F1-(micro/macro) and

sample perplexity.

As expected, the bond-transformer achieves almost perfect performance (99.99% octet

accuracy), since the task becomes a matter of counting covalent bonds, once you include the

order of the bonds. The binary-transformer also achieves excellent performance (99.73%

octet accuracy), even though it is not given any information about bond types. With 1

masked atom, the problem of recovering the corrupted atom, without any bond types, can

be seen as a combinatorial problem. This suggests that the binary-transformer is able

approximately solve this problem by inferring the bond orders from the remaining molecule.

By only using neighborhood information, the Bag-of-neighbors model gets 90%, which

serves as a very strong baseline, but without the full structural context, the model can-

not approximate the octet-rule. Similar, by only providing compositional information, the

Bag-of-Atoms model, performs significantly worse, showing that structural and neighboring

information is important.

Finally, the Unigram, relies purely on the frequency of occurrence of elements in the

dataset, thus always guessing the masked atom is hydrogen and performs poorly.

We provide extended results on masking multiple atoms, transformer model sizes, and

accuracy by length in Supporting information.
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Table 2: Performance of our models for 1 masked atoms per molecule. The uncertainty
corresponds to the standard deviation of ten models, trained with different start seed.

Model Octet Accuracy Octet F1 (micro/macro) Perplexity
bond-transformer 99.99±0.01 99.99±0.01 / 99.99±0.01 1.002±0.001
binary-transformer 99.73 ±0.01 99.73 ±0.01 / 93.44 ±4.20 1.009 ±0.002
bag-of-neighbors 90.67 ±0.01 90.67 ±0.01 / 77.18 ±0.01 1.281 ±0.004
bag-of-atoms 65.77 ±4.48 65.77 ±4.48 / 44.30 ±4.92 3.310 ±0.478
Unigram 47.32 47.32 / 32.85 3.104
octet-rule-unigram 100 100 / 100 1.002

ZINC - going beyond the octet rule

We consider the ZINC dataset as it cannot be fully explained by the octet rule and has a

more of ambiguous elements and a larger quantity of them than QM9. E.g. with ncorrupt = 1,

our ZINC testset contains 924 Fluors to be predicted as opposed to 9 Fluors in QM9.

Given some elements, namely ions and hypervalent molecules, cannot be predicted by

the octet rule we add k-smoothing24 to the octet-rule-unigram model. This avoids the

case of 0 probability, which would result in infinite perplexity loss. We optimize k on the

validation set and found the optimum at k=1842.

From Table 3 we see that the octet-rule-unigram model no longer has 100% octet F1,

which emphasizes to what extend that the dataset cannot be fully explained by the octet

rule, due to molecules with charges and hypervalency. Both our transformer models performs

similar or better than the octet-rule-unigram, when evaluated on Octet F1, sample F1 and

sample perplexity. This is especially the case with with F1 macro, that puts more emphasis

on the underrepresented cases, which in our case are the most interesting. This indicates

that the transformer models also have learned to discriminate between elements that should

be equally likely from the perspective of the octet rule, but might have higher likelihood

under a given structure.
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Table 3: Performance of our models for 1 masked atoms per molecule. The uncertainty
corresponds to the standard deviation of ten models, trained with different start seed.

Model Octet F1 (micro/macro) Sample F1 (micro/macro) Perplexity
bond-transformer 99.52±0.04 / 97.97±3.17 98.64±0.03 / 62.67±3.19 1.047±0.001
binary-transformer 99.13 ±0.05 / 91.38 ±4.94 98.18 ±0.06 / 55.76 ±4.89 1.063 ±0.002
octet-rule-unigram 99.17 / 88.65 97.22 / 38.48 1.164
bag-of-neighbors 90.73 ±0.03 / 76.50 ±0.45 89.00 ± 0.03 / 29.47 ±0.37 1.412 ±0.004
bag-of-atoms 50.84 ±0.30 / 56.75 ±0.58 49.06 ±0.32 / 9.84 ±0.53 3.135 ±0.073
Unigram 48.05 / 56.40 46.10 / 6.31 3.221

Since our model has the ability to corrupt multiple atoms in a molecule, we investi-

gate how the amount of corruption affects the performance. This is shown in Figure 3 (see

Supporting information for F1 metrics, and accuracy/F1 by number of atoms). Here we

see that the accuracy of Bond-Transformer barely is affected, even when all the atoms in

the molecule are masked. This suggests that the model primarily uses the structural infor-

mation (bond type and connections). The Binary-Transformer however drops slightly in

accuracy as the molecule is corrupted. This makes sense, as without bond type informa-

tion, the model can use the label of the remaining atoms to infer the bond types, but as we

corrupt more, we limit the available information in the molecule. The same is the case for

the Bag-of-neighbors. In the case of Bag-of-atoms, the model seem to converge to the

Unigram.
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Figure 3: Sample accuracy of the models, evaluated by different number of masked atoms
on ZINC dataset. Errors bar corresponds to standard deviation of 10 models trained with
different start seed.

To investigate if our model can understand ions we have visualized the confusion matrix

for atoms with four covalent bonds in Figure 4 (other bond order confusion matrices can be

found in Supporting information). In this case, our dataset contains examples of C, but also

N+ ions and hypervalent S. The confusion matrix shows that while our Octet-rule-unigram

model only predicts C, both the Binary-transformer and Bond-transformer has learned,

that both S and N can have four covalent bonds and how to discriminate between them.

Thus the models seems to have successfully learned a more complex structure rule, than the

octet rule.

To better understand the models success in predicting hypervalent elements we visualize

the confusion matrix for five and six covalent bonds in Figure S1 and S2 (see Supporting
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information). With five covalent bonds we only have one occurrence of P, which is correctly

predicted by the bond-transformer. For six covalent bonds, both transformers correctly

predict all elements with S.

To assess the models ability for predicting ambiguous elements we visualize the confu-

sion matrix for one covalent bond in Figure S2. In particular, we find that both transformer

models (binary-transformer/bond-transformer) can successfully predict a large number

of F molecules (279/270) while only misclassifying a small amount of H (23/21) as F.

For future investigations, we find that the QM9 and ZINC datasets are heavily biased

towards H and C. This might make training difficult due to dataset imbalances and could

be improved by oversampling rare elements.46
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Figure 4: Confusion matrix for the testset, with ncorrupt = 1, where the masked atom has four
covalent bonds. We provide this matrix for the octet-rule-unigram, binary-transformer,
and bond-transformer.

Qualitative results

To investigate the binary-transformer corrections of atoms in a molecule, we inspect a

few interesting predictions on the ZINC dataset. We show the molecules with the predicted

conditional probabilities of the possible element labels on the masked atoms. Figure 5a
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illustrates an example where the model correctly predicts N, even though N− ions are very

rare in the dataset. It also puts a reasonable amount of probability of the target being

O, which could be a valid guess assuming the octet rule applies. In Figure 5b we see an

example of a hypervalent S, which our model correctly predicts, with a very high certainty.

The hypervalent S often appears in the dataset with the two double bonded O, which might

be a giveaway for the model. The example in Figure 5c would however most likely not have

a immediate explanation, but the model is very certain of it prediction, which is also correct.

The context of the elements with one covalent bond is expected to be identical, under the

octet rule, since both have one neighbor to any of the other elements in the data, but since

the data is heavily biased towards hydrogen it is worth checking if the predicted probabilities

are also biased. From Figure 5d, we see that even though the model incorrectly predicts H,

the second most likely guess of Cl is correct, even though F appears twice as often in the

dataset. A similar case can be seen in 5e where the model is in doubt between two elements,

that both could be considered correct under the octet rule. Finally, in Figure 5f we have an

example where the model is very certain, but makes a completely wrong prediction.
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Figure 5: Predicted atom probabilities. The molecule corresponds to the true molecule,
where the colored atom is the target we want to predict. Green corresponds to correct, and
red to wrong predictions.
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Conclusion

In this work we have introduced the binary-transformer and bond-transformer models,

and evaluated their ability to recover masked atoms in an undirected molecular graph with

discrete representations of bonds. The models achieves 99.73±0.01 % and 99.99±0.01 octet

F1-micro on the QM9 dataset, while masking 1 atom per molecule, suggesting that the model

is capable of learning the octet rule, which is the underlying selection criteria for the QM9

data set.

When evaluated on the ZINC dataset, which contains more complex structure rules, our

transformer models outperforms the octet-rule-unigram model in all metrics, including

achieving 99.52± 0.04 and 99.13± 0.05 octet F1-micro, when masking 1 atom per molecule.

When paired with the analysis of the confusion matrix, this indicates that the models has

learned rules that exceed the octet rule, like ions and hypervalent molecules.

Deep learning models are extremely flexible and we have shown that the transformer ar-

chitecture, which makes no assumption of the amount of atoms or bonds in a molecule, and

could in theory be able to model a wide variety of molecular rules. With the high accuracy

on the QM9 and ZINC datasets we hypothesize that the transformer models, both the bond

and binary based versions, could be well suited for learning other molecular rules, such as

structure rules related to properties. As inference with the transformer is cheap, correcting

billions of molecules is therefore possible.

The transformer model and embeddings made from undirected molecular graphs may

furthermore be useful in chemical discovery tasks such as automatically generating and enu-

merating new molecules.

Moreover, years of progress in language modeling for NLP has given rise to strong con-

textual vectors of information that is now the defacto standard for state-of-the-art models

in close to every popular dataset for benchmarking neural network performance.18,47,48 In
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particularly, these pretrained language models works surprisingly well for areas of limited

labeled data, something that is fairly prevalent in many molecular chemistry tasks as data

might be expensive to gather.
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